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A Method for Studying the Ground State Unimolecular
Dissociation Channels of Polyatomic Radicals
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Figure from http://www.chemicaldynamics.lbl.gov/ Beamline 9.0.2



From D. A. Blank, Ph.D. Thesis, University of California, Berkeley, 1997
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• Allyl Iodide used as photolytic precursor to the 
allyl radical

• Allyl radical dispersed as a function of 
translational energy and therefore as a function of 
internal energy
– We can study the isomerization and dissociation 

channels of the allyl radical as a function of internal 
energy

– Allyl radical is produced with an internal energy range 
that spans the barriers of the channels of interest



Allyl Radical Reaction Paths
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Allyl radical dissociation/isomerization processes
when photoexcited near 240 nm (Peter Chen and YT Lee)
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G2/B3LYP energetics from Davis et al. 
J. Phys. Chem.  A 103, 5889 (1999)
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Allyl Radical Reaction Paths
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Competing C-H bond fission channels 
of the 2-propenyl radical
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Measure the Kinetic Energy ET imparted to the 
Halogen atom + Nascent radical to disperse the 

radicals by internal energy.  Then determine product 
branching as a function of internal energy in the 

radical.
193 nmnozzle

skimmers

-30 kV Al
doorknob

quadrupole 
mass spec.

ionization source

Scintillator

PMT
Eint radical = hν−Do(C-Cl)-ET

Figure from D. E. Szpunar, Ph.D. Thesis, University of Chicago, 2003



C-Cl fission gives 2-propenyl radicals
dispersed by internal energy
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Reprinted with permission from Reference 
4, Fig. 5. Copyright 2001, ACS.

Reprinted with permission from Reference 1, Fig. 1 (top), copyright 2000, AIP and 
from Reference 4, Fig. 4 (top), copyright 2001, ACS.

Reprinted with permission from Reference 
4, Fig. 6 (top). Copyright 2001, ACS.
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H2C=C=CH2 + H
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Reprinted with permission from Reference 
4, Fig. 5. Copyright 2001, ACS.

Reprinted with permission from Reference 1, Fig. 1 (top), copyright 2000, AIP and 
from Reference 4, Fig. 4 (top), copyright 2001, ACS.

Reprinted with permission from Reference 1, Fig. 1 
(middle), copyright 2000, AIP and from Reference 4, 
Fig. 7 (middle), copyright 2001, ACS.
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4, Fig. 5. Copyright 2001, ACS.

Reprinted with permission from Reference 1, Fig. 1 (mddle), copyright 
2000, AIP and from Reference 4, Fig. 7 (middle), copyright 2001, ACS.

Reprinted with permission from 
Reference 1, Fig. 3, copyright 2000, 
AIP and from Reference 4, Fig. 10, 
copyright 2001, ACS.
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Reprinted 
with 
permission 
from 
Reference 1, 
Fig. 4, 
copyright 
2000, AIP 
and from 
Reference 4, 
Fig. 11, 
copyright 
2001, ACS.

Reprinted with 
permission from 
Reference 1, Fig. 
3, copyright 
2000, AIP and 
from Reference 4, 
Fig. 10, copyright 
2001, ACS.
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Allyl radical dissociation/isomerization (allyl iodide precursor) 
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Reprinted with permission from Reference 2, Fig. 1. 
Copyright 2002, AIP.

Reprinted with permission from Reference 3, Fig. 7. 
Copyright 2003, ACS.
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Allyl radical dissociation/isomerization (allyl iodide precursor) 
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Allyl radical dissociation/isomerization (allyl iodide precursor) 
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A minor I(2P1/2) channel produces near-threshold allyl radicals 
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Copyright 2003, ACS.

Reprinted with permission from Reference 3, Fig. 4 (top). 
Copyright 2003, ACS.
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A minor I(2P1/2) channel produces near-threshold allyl radicals 
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Copyright 2003, ACS.

Reprinted with permission from Reference 3, Fig. 2 (top). 
Copyright 2003, ACS.

Reprinted with permission from Reference 3, Fig. 5 (top). 
Copyright 2003, ACS.
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How can allyl radicals be stable with internal energies over 
15 kcal/mol in excess of the C-H bond fission barrier?
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Nascent allyl radicals stable due to a centrifugal barrier
to loss of  an H atom from the central carbon atom 

• High translational recoil and long lever arm to the C3H5 center of 
mass results in significant partitioning of energy to rotation in the 
nascent allyl radical  (19 kcal/mol when ET(C-I fission) = 24 kcal)

• Much of this rotational energy must appear in rotational energy of  
allene because the orbital angular momentum of the H + allene
product recoil, L = µvrelb, is small due to the near zero 
impact parameter, b and the small reduced mass, µ

• Thus the barrier to unimolecular dissociation is higher than 
expected



Centrifugal Barrier
Lallyl = µvrelb + Lallene

For a diatom: Veff = pθ2/(2µr2) + V(r)

Larger µ gives smaller centrifugal barrier

Erot (polyatomic 
products)

V(r)

Erot

r



Alter the centrifugal barrier by using allyl-d2 radicals
Larger µ gives smaller centrifugal barrier, but what about b vs. b’?
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Copyright 2003, ACS.
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